
LECTURE 35 SIGMA NOTATION AND LIMITS OF FINITE SUMS

Motivated by approximating the area under the graph of a function using �nite sums, today we study a
more general presentation of sums involving large number of pieces. First, consider the example in the quiz,
i.e. estimate the area under f (x) with 4 subintervals on [0, π] using the left endpoint rule. We end up with

Area = ∆x

(
f (0) + f

(π
4

)
+ f

(π
2

)
+ f

(
3π

4

))
.

Sigma Notation and Indexing

While four terms here are manageable, one wishes to improve the accuracy of the approximation by using
more subintervals. Then, we just have bigger and bigger number of terms in a sum, a taxing task to write
with your hands, even when you program. We need a simpler yet e�ective way of describing �adding a lot
but still �nite number of things up�. This yields the sigma notation,

n∑
k=1

ak.

Here, ak is called the summand (like integrand), which is the expression of the kth term in the long list of
terms. k is the index of terms we are adding.1 is the lower limit of the sum, the index of the �rst term
you add. n is the upper limit of the sum, the index of the last term you add. Suppose we have a list of
numbers {a1, a2, a3, a4, a5} . Then,

3∑
k=1

ak = a1 + a2 + a3

4∑
k=2

ak = a2 + a3 + a4

Let's see some speci�c examples of ak. Note that the index k does not have to start at k = 1 necessarily.

Example. (Classic examples)

(1)
5∑

k=1

k = 1 + 2 + 3 + 4 + 5.

(2)
3∑

k=1

(−1)
k
k = (−1)

1
1 + (−1)

2
2 + (−1)

3
3.

(3)
5∑

k=4

k2

k − 1
=

42

4− 1
+

52

5− 1
.

Remark. Carl Friedrich Gauss managed to add up

(1 + 2 + · · ·+ 100) =

100∑
k=1

k

by observing that ak + a101−k = 101 holds for every k = 1, . . . , 50. Therefore, the sum is 50 × 101 = 5050.
There are many versions of this story, but one thing stays true � he was seven when he noticed this.

Notice that we are given the pattern of ak here for each sum. Writing out what the sum actually is is
quite simple from this end. The harder part is to recognize the pattern from a sequence of numbers and
then express it as a sum, i.e. �nd the general expression for ak.
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Example. Write 1 + 3 + 5 + 7 + 9 in many ways, i.e. the lower limit does not have to start at k = 1.

(Starting with k = 0)

4∑
k=0

(2k + 1)

(Starting with k = 1)

5∑
k=1

(2k − 1)

(Starting with k = 2)

6∑
k=2

(2k − 3)

(Starting with k = −3)

1∑
k=−3

(2k + 7)

Linearity of Summation

Sums are also a linear process, that is
n∑

k=1

(cak + dbk) = c

n∑
k=1

ak + d

n∑
k=1

bk

where c, d are constant (independent of k). In particular, we collect the following three rules,

(1)
n∑

k=1

(ak ± bk) =

n∑
k=1

ak ±
n∑

k=1

bk

(2)
n∑

k=1

cak = c

n∑
k=1

ak

(3)
n∑

k=1

c = c

n∑
k=1

1 = c · (adding up the number 1, n times) = cn.

Example. When you see a complicated-looking summand, yet its terms are all added or subtracted, you
can divide and conquer.

n∑
k=1

(
3k − k2

)
= 3

n∑
k=1

k −
n∑

k−1

k2.

You can factor out negative numbers, too,
n∑

k=1

(−ak) =
n∑

k=1

(−1) ak = (−1)

n∑
k=1

ak = −
n∑

k=1

ak.

Special Sums

Lastly, we look at three speci�c sums whose formula can be derived.
n∑

k=1

k =
n (n+ 1)

2
.

This formula is inspired by Gauss's way of adding consecutive integers. Consider adding up twice and then
divide by 2, but in a particular order,

1 + 2 + · · ·+ n

n+ (n− 1) + · · ·+ 1

Note that if we add up every kth term in each sequence, we always end up with (n+ 1), and we have n of

them. Thus, the sum of one sequence is n(n+1)
2 . This approach avoids the argument of considering n odd or

even.
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We also have sum of squares and cubes of consecutive integers,
n∑

k=1

k2 =
n (n+ 1) (2n+ 1)

6
,

n∑
k=1

k3 =

(
n (n+ 1)

2

)2

.

Note that the sum of cubes is exactly the square of sum of the �rst n integers. This is a remarkable fact
from arithmetic.

Relation to Integration

Our original goal is to make �ner and �ner partitions to improve the accuracy of our approximations of
the area under the graph of a function. This process involves having more and more terms in the sum, whose
summand will follow a pattern. Eventually, we want to take the number of subintervals to in�nity, and see
if the sum yields a number.

Example. Find the limiting value of lower sum approximations to the area of the region R below the
graph of y = 1 − x2 and above the interval [0, 1] on the x-axis using equal-width rectangles whose widths
approach zero and whose number approaches in�nity.

Solution. Suppose we chop down [0, 1] using n points. Then, each subinterval has length ∆x = 1−0
n = 1

n .
Our partition is

P =

{
0,

1

n
,

2

n
, . . . ,

n− 1

n
,
n

n

}
.

Since the function is decreasing on [0, 1], a lower sum estimate would be using the right endpoint (to
underestimate, or to have all rectangles be inscribed in the region R). We �nd

Area (n) =
1

n

(
f

(
1

n

)
+ f

(
2

n

)
+ · · ·+ f

(
n− 1

n

)
+ f

(n
n

))
=

n∑
k=1

1

n
f

(
k

n

)

=
1

n

n∑
k=1

f

(
k

n

)

=
1

n

n∑
k=1

(
1−

(
k

n

)2
)

=
1

n

n∑
k=1

(
1− k2

n2

)

=
1

n

[(
n∑

k=1

1

)
−

(
1

n2

n∑
k=1

k2

)]

=
1

n

[
n− 1

n2
n (n+ 1) (2n+ 1)

6

]
= 1− 2n2 + 3n+ 1

6n2

that is, this is the area of region R given that we use n subintervals. Give me an n and I can tell you what
the approximate area is.

Now, the goal is to take a limit n→∞. We �nd

lim
n→∞

(
1− 2n2 + 3n+ 1

6n2

)
= 1− 1

3
=

2

3

as the second term requires one more step of dividing top and bottom by n2.
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In fact, you can try getting the upper sum approximation, here, using the left endpoint rule. You will
�nd that the limit is also 2

3 . In fact, you can show that any �nite approximation will give this number, while
being sandwiched between the upper and lower sum approximations. Hence, we de�ne the area of R as this
limiting value.


